miRTar2GO: a novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA–target interaction data

نویسندگان

  • Alireza Ahadi
  • Gaurav Sablok
  • Gyorgy Hutvagner
چکیده

MicroRNAs (miRNAs) are ∼19-22 nucleotides (nt) long regulatory RNAs that regulate gene expression by recognizing and binding to complementary sequences on mRNAs. The key step in revealing the function of a miRNA, is the identification of miRNA target genes. Recent biochemical advances including PAR-CLIP and HITS-CLIP allow for improved miRNA target predictions and are widely used to validate miRNA targets. Here, we present miRTar2GO, which is a model, trained on the common rules of miRNA-target interactions, Argonaute (Ago) CLIP-Seq data and experimentally validated miRNA target interactions. miRTar2GO is designed to predict miRNA target sites using more relaxed miRNA-target binding characteristics. More importantly, miRTar2GO allows for the prediction of cell-type specific miRNA targets. We have evaluated miRTar2GO against other widely used miRNA target prediction algorithms and demonstrated that miRTar2GO produced significantly higher F1 and G scores. Target predictions, binding specifications, results of the pathway analysis and gene ontology enrichment of miRNA targets are freely available at http://www.mirtar2go.org.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoform-level microRNA-155 target prediction using RNA-seq

Computational prediction of microRNA targets remains a challenging problem. The existing rule-based, data-driven and expression profiling approaches to target prediction are mostly approached from the gene-level. The increasing availability of RNA-seq data provides a new perspective for microRNA target prediction on the isoform-level. We hypothesize that the splicing isoform is the ultimate eff...

متن کامل

Comparing MicroRNA Target Gene Predictions Related to Alzheimer's Disease Using Online Bioinformatics Tools

Introduction: The prediction of microRNAs related to target genes using bioinformatics tools saves time and costs of the experimental analyses. In the present study, the prediction of microRNA target genes relevant to Alzheimer’s Diseases (AD) were compared with the experimentally reported data using different bioinformatics tools. Method: A total of 41 microRNAs associated with 21 essential ge...

متن کامل

Comparing MicroRNA Target Gene Predictions Related to Alzheimer's Disease Using Online Bioinformatics Tools

Introduction: The prediction of microRNAs related to target genes using bioinformatics tools saves time and costs of the experimental analyses. In the present study, the prediction of microRNA target genes relevant to Alzheimer’s Diseases (AD) were compared with the experimentally reported data using different bioinformatics tools. Method: A total of 41 microRNAs associated with 21 essential ge...

متن کامل

starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data

MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (sRNAs) that regulate gene expression by targeting messenger RNAs. However, assigning miRNAs to their regulatory target genes remains technically challenging. Recently, high-throughput CLIP-Seq and degradome sequencing (Degradome-Seq) methods have been applied to identify the sites of Argonaute interaction and miRNA cleava...

متن کامل

PARma: identification of microRNA target sites in Argonaute PAR-CLIP data

PARma is a complete data analysis software for AGO-PAR-CLIP experiments to identify target sites of microRNAs as well as the microRNA binding to these sites. It integrates specific characteristics of the experiments into a generative model. The model and a novel pattern discovery tool are iteratively applied to data to estimate seed activity probabilities, cluster confidence scores and to assig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017